Vascular Access Catheter TipS

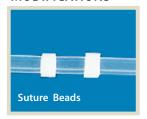
SHARING INFORMATION TO IMPROVE LONG-TERM VASCULAR ACCESS

CATHETER BASICS - AVAILABLE MODIFICATIONS -

DISTAL TIP OPTIONS

INTESTINAL OPTIONS

MODIFICATIONS



MODIFICATIONS

EXIT SITE OPTIONS

CATHETER DESIGN A CUSTOM CATHETER

selection criteria to consider

Material for Catheter Construction

should have high tensile strength should be soft and pliable should be chemically resistant should be biocompatible

stiffer tubing is easier to insert but may promote endothelial injury during insertion and advancement promoting tissue proliferation and microthrombi formation.

Distal Tip Configuration

preferably an atraumatic rounded tip

while bevel and blunt tips may be easier to insert they can cause friction and endothelial irritation during insertion and advancement that results in mechanical damage to the tunica intima, the endothelial lining

potential results of this roughing of the surface within the vessel wall, allowing platelet aggregation, include phlebitis and thrombus formation

French Size

to meet flow requirements to suit the vessel diameter to maintain minimally invasive profile

in general a catheter diameter that permits continuous blood flow around it has a decreased chance of inducing a clot. catheter diameter relative to vessel diameter is a balancing act too large a catheter takes up to much space in the vessel and too small a catheter increases the resistance to infusion and withdrawal.

Modifications

to suit the access location vascular, tissue, organ or skin

Exit Site Options

access port, luer adaptor, pigtail, cuff or plug to allow repeated access to the catheter

